Refined ranking relations for selection of solutions in multi objective metaheuristics
نویسندگان
چکیده
Two methods for ranking of solutions of multi objective optimization problems are proposed in this paper. The methods can be used, e.g. by metaheuristics to select good solutions from a set of non dominated solutions. They are suitable for population based metaheuristics to limit the size of the population. It is shown theoretically that the ranking methods possess some interesting properties for such applications. In particular, it is shown that both methods form a total preorder and are both refinements of the Pareto dominance relation. An experimental investigation for a multi objective flow shop problem shows that the use of the new ranking methods in a Populationbased Ant Colony Optimization algorithm and in a genetic algorithm leads to good results when compared to other methods.
منابع مشابه
A new method for solving fuzzy multi-objective linear programming problems
The purpose of this paper is to develop a new two-stage method for fuzzy multi-objective linear program and apply to engineering project portfolio selection. In the fuzzy multi-objective linear program, all the objective coefficients, technological coefficients and resources are trapezoidal fuzzy numbers (TrFNs). An order relationship for TrFNs is introduced by using the interval expectation of...
متن کاملMULTI-OBJECTIVE OPTIMIZATION OF TIME-COST-SAFETY USING GENETIC ALGORITHM
Safety risk management has a considerable effect on disproportionate injury rate of construction industry, project cost and both labor and public morale. On the other hand time-cost optimization (TCO) may earn a big profit for project stakeholders. This paper has addressed these issues to present a multi-objective optimization model to simultaneously optimize total time, total cost and overall ...
متن کاملAnticipatory Stochastic Multi-Objective Optimization for Uncertainty Handling: A Case Study in Portfolio Selection
This paper deals with how to incorporate anticipatory behavior in multi-objective metaheuristics. We propose a principled methodology to track the stochastic dynamics of the population of candidate Pareto optimal solutions in the objective space by incorporating the Kalman Filter (KF) estimation into the Anticipatory S-Metric Selection Evolutionary Multi-Objective Algorithm (ASMS-EMOA). The pro...
متن کاملModel and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand
The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...
متن کاملPSO for multi-objective problems: Criteria for leader selection and uniformity distribution
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The first one is based on the mean of the m optimal particles and the second one is based on appoin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 243 شماره
صفحات -
تاریخ انتشار 2015